
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| 标题 |
| 基于广义回归神经网络的铁路货运量预测(33 卷) |
| 英文标题 |
| Forecast of Railway Freight Volumes Based on Generalized Regression Neural Network |
| 摘要 |
| 针对BP神经网络预测存在局部极小缺陷和收敛速度慢的问题,提出基于广义回归神经网络 (GRNN) 的预测模型。基于我国1999—2008年铁路货运量的历史统计数据,应用GRNN模型和混沌BP神经网络模型对铁路货运量进行预测。通过两种预测模型的计算结果比较说明,GRNN模型具有良好的收 |
| 作者 |
| 新闻作者:温爱华,李 松 |
| 关键字 |