
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| 标题 |
| 基于GRNN的主要编组站办理车辆数的预测(34卷) |
| 英文标题 |
| Forecast of Treated Vehicle Number in Main Marshalling Station based on GRNN |
| 摘要 |
| 运用广义回归神经网络对铁路编组站办理车辆数进行预测。在对编组站办理车辆数的经济因素和结构因素进行分析的基础上,给出GRNN预测的全过程,并将GRNN与BP网络预测进行比较,建立网络、训练和检测,最终模拟得到全路主要编组站办理车辆数。实例分析证明GRNN能提高预测精度,为编组站规划和设计提供理论支持。 |
| 作者 |
| 新闻作者:李益民 |
| 关键字 |